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Some properties of trapped oscillations in an inviscid rotating fluid were studied 
by Stewartson (1971, 1972). In  this paper the modifications necessary to allow 
for a small viscosity in the fluid are discussed. It is found that concentrated 
disturbances of the kind used in ray theory are only possible if the rays are 
thought of as emanating from two sources outside the fluid and at  opposite ends 
of the ray. Otherwise the ray must have a lateral tail, which vitiates the notion 
of a ray. The double-source character of rays is preserved at  reflexions except 
when at glancing incidence. In  this case a substantial part of the ray strength is 
lost and may give rise to a lateral tail if uncompensated. The focusing of the rays 
at the limit cycle is also discussed and shown to lead to a catastropic loss of 
energy, so that a free oscillation if set up rapidly decays. A simple forced oscilla- 
tion is considered and shown to lead to weak resonances in the bands of trapped 
oscillations. 

1. Introduction 
The oscillatory motions superposed on a fluid rotating in a cavity as if solid 

have received much attention in recent years. A recent review of the work has 
been given by Greenspan (1968) and is principally concerned with interior prob- 
lems, i.e. when the fluid is bounded externally by a rigid closed sdace .  The 
principal effect of a weak viscosity is then confined to the Ekman layer near the 
outer boundary of the fluid and its relative contribution to the fluid motion is 
of O(E3), where E = v/Qaa, v being the kinematic viscosity, Q the angular 
velocity and 2a a representative diameter of the cavity. Over a narrow region 
near the critical circles these layers thicken slightly but overall it appears at 
&st sight that, in many problems of geophysical and oceanographic interest, 
viscous effects are not important. 

A start has also been made on the study of oscillatory motions when the fluid 
has an internal boundary. Such studies are relevant to geophysics; thus the 
oscillations of a fluid confined in a spherical shell are of interest in connexion with 
motions in the earth’s core and the geomagnetic secular variation (Hide & 
Stewartson 1972), now that the existence of the central body has been firmly 
established. The analytic studies have not yet made much progress beyond 
consideration of such oscillations when the shell is thin, but it has already become 
evident that the presence of the inner boundary can exert an important effect 
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on these oscillations. In particular the characteristic cone which touches the 
inner sphere (at the critical circle) is seen to be linked with a pathological element 
in the inviscid motions. This was first noticed as a relatively weak phenomenon 
in asymmetric oscillations (Stewartson & Rickard 1969) but has subsequently 
been found to be a more pronounced feature of symmetric trapped oscillations. 
The existence of such oscillations was first suggested by Stern (1963) and closed 
ray-patterns were found shortly afterwards by Bretherton (1964). More recently, 
Israeli (197 1) has pointed out that there are closed ray-patterns for a continuous 
range of frequencies near that which leads to Bretherton’s closed ray-pattern. 
Stewartson (1971, 1972, subsequently denoted by Sa ,  b )  demonstrated that, 
apart from one exceptional case, all other rays in the trapped zone converge onto 
these limit cycles and that pathological features then develop in the flow field. 

Israeli has also made a numerical study of symmetrical oscillatory motions in 
spherical shells taking into account the effects of viscosity, and with particular 
reference to trapped oscillations. He finds good agreement with the theoretical 
value of the period necessary for one of the Bretherton limit cycles. The period 
of the trapped oscillation is identified by noting the peak value of some repre- 
sentative quantity as the period of the forcing disturbance is varied; this peak 
becomes less pronounced as the thickness of the shell diminishes. The details 
of the flow properties at  the peak are also only vaguely similar to the analytical 
predictions for an inviscid fluid, although this may be due to the nature of the 
forcing oscillation (a sinusoidal variation in the angular velocity of one of the 
spheres), which must generate fluid motions over the whole of the shell. Israeli 
also makes a favourable comparison with the experimental values of the resonant 
frequencies obtained by Aldridge (1967) for a shell whose inner radius was half 
that of the outer. 

In  this paper we make a start on the theory of oscillatory motions of a viscous 
fluid, restricting attention to a thin shell and a very weak viscosity. The inviscid 
studies make considerable use of ray theory and we find that, if this theory is 
to be applicable in a weakly viscous fluid, each ray must be thought of as being 
generated by two equal sources, placed on the lineal extensions of the ray beyond 
the fluid, one on each side. The implication is that a disturbance cannot be thought 
of as propagating along the ray in a particular direction, from the inner sphere 
to the outer sphere for example, but must be thought of as being composed of two 
disturbances, essentially equal in strength, propagating in opposite directions. 
Otherwise the ray has an extensive lateral tail which contradicts the notion of 
a ray. At each reflexion of the ray, either at the inner or the outer sphere, the 
origins of the two equivalent sources move, remaining outside the fluid of course, 
but as the ray approaches the limit cycle they converge towards the two points 
where the meridional sections of the characteristic surfaces touch the inner 
sphere. Hence, as expected, the oscillations must decay if there are no sources in 
the fluid or on the boundaries, and indeed a rough argument shows that the rate of 
decay is on the inviscid time scale. An examination of the resonant wave ampli- 
tudes produced by a particular forcing motion of the boundaries strongly suggests 
that the maximum amplitudes in the majority of the trapped wave do tend to 
infinity as v + 0 but only very slowly. 
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2. Governing equations 
We consider a viscous incompressible fluid of density p and kinematic viscosity 

v confined between two concentric spheres of radii a and b (a  > b ) .  In  the basic 
motion the spheres and the fluid rotate as if solid about a common diameter 1 
with angular velocity Q. The motion is slightly disturbed, the velocity perturba- 
tions u being small so that the governing equations may be linearized and written 
in the form 

au 1 
divu = 0, - + 2 Q x u  = --gradp-vcurlcurlu, (2.1) 

at P 

where p is the pressure. Let us define a reduced set of co-ordinates, in terms of 
the usual spherical co-ordinates ( r ,  8, q5), based on the common centre of the 
spheres and the axis 1, by writing 

r = b ( l + c z ) ,  8 = in-eBy, e = (a--b)/b,  (2.2) 

so that the inner spherical boundary is defined by z = 0 and the outer by z = 1. 
Further, the equatorial plane, perpendicular to 1, is given by y = 0. 

Now we suppose that e 4 1, so that the fluid is confined with a thin shell, take 
the motion to be axisymmetrical, and therefore independent of $, and to be 
sinusoidal in time. Specifically we write 

u = AaQ(sh,, u.0, u ~ )  exp 2 i Q c h ~ t ,  (2.3) 

where u,, u g  and u4 are functions of y and z only and it is understood that the 
real parts of the complex functions are to be taken. Thus we are interested in 
relative fluid motions confined to the immediate vicinity of the equator. The 
reduced frequency w is to be found and A is a small constant, satisfying the 
condition IAl < s as a necessary condition for the validity of the linearization 
of the equations. We shall see in 5 5 below that this condition is not sufficient. 
Setting 

substituting into (2.1) and neglecting all but the lowest powers of E ,  we find that 

au,/aZ = aue/aY, u$ = ap/az, (2.5a, b )  

(2.56) 

(2.5d) 

p = 2p!2bcP(y, z )  + constant, (2.4) 

2 ( i~u ,9  - yu4) = 2 aP/ay + R-l a2u,/az2, 

2(iwu$ + yu,) = R-I a2u4/az2, 

where R = (Rb?/v)  €3. (2 -6 )  

These equations may be simplified on writing 

u, + iu, = az+/az, u, - iu, = az-iaz, (2.7) 

(2.8) 2u, = a(z+ + z - ) p y ,  
when they reduce to 
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FIGURE 1. Closed ray-patterns (ABCDEFGDA) for the trapped mode 
corresponding to (a) w = w1 (=  %J2)  and ( b )  w = 0.85. 

These equations were first written down by Roberts & Stewartson (1963) 
in another but related situation and have subsequently been re-derived by a 
number of authors. The equations are valid provided that (i) the solution obtained 
is confined within a finite distance of the line y = 0, i.e. 

(2.10) 

for some positive yo, or a t  least lZ*l + 0 sufficiently rapidly as lyl -+ CO, and 
(ii) R > 1. The first condition implies that the relative motion of the fluid is 
confined within a small angular distance of the equator and so the waves are 
trapped, while the second is the mathematical statement of an assumption of 
small viscosity. 

For R = co the possible existence of such trapped waves has been discussed 
by Bretherton (1964) and some of their properties elucidated in Su and S b .  The 
governing equations (2.9) then have a solution 

2, = f ( * ( w + y ) 2 - 2 ) ,  2- = g(~(o-y) '-z), (2.11) 

where f and g are arbitrary. For free oscillations u, = 0 on z = 0, 1 and hence, 
from (2.8), f+ g = 0 on x = 0, 1. Using ray theory it is now possible t o  determine 
the values of w which permit Z+ to be non-zero in a finite region only and to find 
some of their properties. It emerges that the values of o are not discrete but lie 
in bands of which the lowest is ($)* 6 w 6 $42 and in general s1, 6 w 6 w,, where 
wk M #n - 0.81 when n is a large integer while w, - s1, = O(wz3)  when w, is large. 
At each permissible value of w it is possible to find a closed ray-pattern; also 
any neighbouring ray inside it will, if i t  is followed and allowance is made for 
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reflexions at  the boundaries, converge on this closed pattern, which thus plays 
the role of a limit cycle. The upper limit w = w, corresponds to a closed ray- 
pattern which touches the inner sphere ( 2  = 0) at  the points ( * w, 0). The lower 
limit w = Q, corresponds to a closed ray-pattern which meets the outer sphere 
( z  = 1)  at the points ( 5 w ,  1) .  The lowest permissible value of w, is $42 and the 
corresponding ray-pattern is shown in figure 1 (a). The lowest permissible value 
of Q, is (+)* and the corresponding ray-pattern consists of the two parabolas 

22 = ( y  rl: QJ2. (2.12) 

An example of a closed ray-pattern at an intermediate value of w is shown in 
figure 1 ( b ) ,  for which w = 0.85. 

By referring either to figure 1 (a) or ( b )  it may be shown that any characteristic 
starting on the part OM of the line 01 will reflect from the boundaries, changing 
sign and changing from one family to the other, but remaining within the domain 
ABFEA, and ultimately converges on the closed ray-pattern. As the rays con- 
verge on the limit cycle the motion of the fluid becomes more violent and exhibits 
a pathological behaviour in the limit. The pathology is worst as w -+ w, and 
least as w +- at, but on the other hand in the strict limit w = Ql the trapped 
mode is confined to just two lines and is physically unacceptable. In  general, 
the fluid in the triangle GDC is undisturbed. Similar remarks can be made about 
the trapped modes in all the bands (Q, < w < 0%) but for simplicity we shall 
restrict our attention to this particular one in this paper. Our object is to examine 
how a weak dissipation affects the structure of the solution, especially near the 
limit cycle, and since ray theory proved to be useful in the inviscid study we shall 
begin by examining how viscosity modifies disturbances confined to the im- 
mediate vicinity of a characteristic. 

3. Fundamental solutions of the basic equation (2.9) 
According to inviscid ray theory the disturbance is thought of as being con- 

fined to the immediate vicinity of a characteristic, for example the number 
c+ = c of the I?+ family, where 

c* = & ( Y f W ) 2 - 2 ,  (3.1) 

and the property being carried on the ray is taken as 

Z+dz = A+, 

A+ being a constant and the same at  all points of the ray between its intersections 
with the boundaries. Let us define this quantity to be thejlux of the ray. 

We can examine how these concepts are modified by the action of viscosity by 
looking at  the fundamental solutions of the basic equations (2.9). In  terms of 
y and c* these equations reduce to 

48 F L M  54 
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and acceptable fundamental solutions can be found on assuming that 2 is of the 
form ly]-*Z(y), where 7 = Rg(c+-c)/lyI*. For Z+ we have 

(3.4) 

(3.5) 

if y > 0 and Z,+ = 0 if y < 0. Another solution is 

Z,+(Y, c+) = El+( -Y, [+I, 
where the tilde denotes the complex conjugate. For 2- we have 

Zl-(Y, c-) = Z,+(Y, 5-), 2 2 -  = q+. (3.6) 

These solutions were first obtained by Morrison & Morgan (1956) and were dis- 
cussed in detail by Moore & Saffman (1969), who showed that 

Z,+(y,c+)dz = 1 if y > 0 1:" (3.7) 

and is zero if y < 0, with similar results for the other functions. Thus when R 1 
they can apparently be thought of as the generalization of the concentrated ray- 
pattern of inviscid theory to include the effect of a weak dissipation. However, 
they possess another important property which distinguishes them from the 
fundamental solutions normally encountered in fluid mechanics, in that they 
do not decay exponentially when 171 is large. In fact 

Thus in the limit of zero viscosity 

(3.9) 

and so, in virtue of (3.7), may be regarded as having the form 

for y > 0, where 6 is the Dirac delta function, with similar results for the other 
basic functions. 

Consider now a concentrated disturbance in the neighbourhood of the I?+ 
characteristic c+ = c, supposing that the fluid is inviscid. The appropriate solu- 
tion is Z+ =f($+), 2- = 0, where f vanishes except in the neighbourhood of 
.$+ = c and is highly peaked at c+ = c. No other restriction can be placed on f 
directly from the inviscid equations obtained by neglecting R-l in (2.9) nor, at 
first sight, from the boundaries since they are effectively plane on the lateral 
scale of the disturbance. Now suppose that R-l is small but not zero. Then the 
structure of the ray is dominated by the basic solutions Z,+ and Z,+ and we 
could write it as 
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where A,, A,, yl and y, are constants. Strictly, these source functions should be 
replaced by source integrals but since the ray is thin there is no advantage to be 
gained by greater precision. One relation between A,  and A ,  may be found by 
integrating across the ray : 

t + = c +  
f d z  = A,+A, ,  s,+=.- (3.12) 

provided that y ,  > y > - y,, which is the case in the fluid if no sources are present 
there. The left-hand side is also constant from (3.2) and can be supposed given, 
The other relation between A ,  and A,  comes from the condition that the ray is 
concentrated near E+ = c in the limit R -+ 00 and so the lateral tails implied by 
(3.9) must be absent. Hence, using (3.5) 

A , - A ,  = 0, (3.13) 

and so the concentrated ray must be thought of as emanating from two sources 
with equal flux placed at points on the continuation of the ray beyond the fluid. 
If the,boundary conditions are such that on any ray the property (3.13) does 
not hold then the ray theory described in Sa ,  b and elsewhere (e.g. Keller & Mow 
1969) may be inappropriate and it is possible that the lateral tails of the ray 
prevent the occurrence of trapped oscillations. 

Equivalent results to these also follow if we think of the solution to the eigen- 
value problem, defined by (2.9) with R = 00 and with the associated boundary 
conditions, as a wave propagation, or initial-value, problem. Lighthill (1965, 
1967) has shown that the physically relevant solution due to a periodic source of 
unit strength at  y = 0, $+ = cis the one whose group velocity is directed away from 
the source and hence is given by (3.10) if y > 0 (Baines 197 I) ,  with corresponding 
results for 2- and for y < 0. Again, therefore, we see that the disturbance con- 
sists of concentrated rays propagating along the characteristics through the 
source, together with four lateral tails whose strength depend only on distance 
from the characteristics and not on distance along the characteristics. Thus in 
order for the tails to be absent on any ray the sources must always occur in 
equal pairs just as in the viscous study. 

4. Viscous reflexion of a concentrated ray 
Let us now consider how a disturbance concentrated in the neighbourhood of 

a characteristic ray reflects from a boundary at the point P. It should be ex- 
plained at the outset that the notion of reflexion is not strictly accurate. We have 
already seen that such a disturbance actually consists of two disturbances with 
equal fluxes travelling in opposite directions so that at the intersection only half 
the wave is incident, the other half having already been reflected. Thus the notion 
of reflexion is not entirely satisfactory and it is more appropriate instead to 
ask what disturbance concentrated near the other characteristic through P is 
compatible with the original disturbance and the conditions zc, = u4 = u, = 0 
on the boundary. 

in the Suppose that the reflexion takes place in the neighbourhood of y = 
48-2 
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plane z = 0. Then near this point the governing equations reduce to 

where p* = w 2 
point (jj, 0), but outside the boundary layer near x = 0, to be 

and Jp,J > 0. We may take the two disturbances through the 

where, in view of the directions of propagation of the two half-waves a > 0 and 
a < 0 in each of 2, and 2-, we regard C+ as given if a < 0 and C- as given if 
a > 0, and we want to determine the remaining properties of C,. The rays are 
concentrated and so C+ and C- must both be continuous at  a = 0 and the scale 
for GI must be large. On the other hand, the scale must not exceed for a larger 
scale implies a ray of thickness < B-3 and this would immediately spread out 
under the action of viscosity. 

In  order to satisfy the boundary conditions at  z = 0 we need to add to (4.2) 
solutions of (4.1) which decay exponentially as x -+ co. Now 

Z* = exp(-/3z+iay} Rep  > 0 (4.3) 

(4.4) 

is a solution of (4.1) provided 

/33 - 2R(ip*/3 _+ a )  = 0. 

Of the three solutions of this cubic equation, one is unacceptable for all real a 
and one, p2, is acceptable for all real a and corresponds to an Ekman layer. Thus 

P2 = @p&(I+i)  when la1 < (%4gp+ 

and either p2 NN 12aRI4 or 12aRIfe)ni (4.5) 

when la\ B p*(Rp*)* according as a < 0. The third solution p3 is given by 

In  virtue of the scaling requirements on a, the properties of Pa and p3 are only 
relevant when la] < N R). It appears a t  first sight that p3 is unacceptable when 
T a > 0 since then Re p3 > 0 but. this is merely symptomatic of the fact that the 
corresponding solutions are advancing into the boundary. The solutions corre- 
sponding to these values of b3 have already been provided by (4.2) and so, in 
order to complete the specification of 2, near z = 0, we only have to add the 
Ekman-laver solutions 

J -m  
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The argument now follows closely that given by Phillips (1963) earlier and we 
conclude that if the form of the ray on the I’+ characteristic and just outside the 
boundary layer is 

then the form of the ray on the I?- characteristic just outside the boundary 
layer is 

The strengths of the two equal sources which dominate Z,  may be computed 
using (3.7) and we see that, if 

Z,dz = A+ (4.9) s 
taken across the ray on the l?+ characteristic, then 

Z-dz = A- = A+p-/p+ (4.10) 

for the reflected ray, so that the sign of the flux is not changed but the magnitude 
is multiplied by the ratio p-/p+. This simple theory breaks down as ph -+ 0. 
A glance at  (4.8) suggests that this occurs when p t  R N 1, i.e. within a distance 
R-* of the critical circles y = 5 w ,  but this assumes that the function F ,  asdistinct 
from its variable, is independent of p+ Yang (1971) has also arrived at  this 
conclusion; he also carried out experiments which confirm the reflexion law 
whenpi. + 0. Whenp-l, = 0 the above theory suggests that the flux of the reflected 
wave is zero; Yang has also carried out an experiment, in the analogous case 
of a stratified fluid, yielding agreement with this conclusion. In  the present 
study, however, the representative width of the wave = O(p*) as p& -+ 0 since 
the flux is of this order and the maximum value of Z is conserved so long as 
viscous forces may be neglected. Hence this will no longer be justified when 
@: R)* - 1 since B” - pz1.F. Viscous forces must therefore be taken into account 
within a distance of O(R-*) from the critical circles. 

s 

5. The neighbourhood of the limit cycle 
It was shown in Sa ,  b for trapped oscillations that the concentrated rays, as 

they reflect off the boundaries z = 0, 1 (not necessarily alternately, see figure l), 
do not in general form a closed path but converge to a limit cycle. As they do so 
the bandwidth of the rays decreases until viscous forces can no longer be neglected 
in the ray. According to inviscid theory each of the functions Z* is quasi-periodic 
in the following way. Let the sth reflexion of a particular ray off the line z = 0 
occur at  lyl = Y(w)-h,, where Y(w) is a point on the limit cycle, so that 
Y ( w )  = w, if w = w,. Further, let the bandwidth of the ray here be t,. Then both 
t, and h, satisfy the law t,+l = A(@) t, where h < I, if IR, < w < w, and tsfl = pnt; 
if w = on, where p, is a constant. Thus the bandwidth decreases as the limit cycle 
is approached but, so long as viscous forces may be neglected, the maximum 
value of is constant. This process changes when t, - R-* as then viscous forces 
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come into play to prevent any further reduction in bandwidth. At this stage the 
velocity of the fluid is of O( Vt;') N O( VR*), where V is a representative velocity 
in the trapped oscillation away from the limit cycle; we can expect that this is 
a maximum and that the velocity then decays to zero within a distance of O(R-i) 
of the limit cycle, but on the other side. The action of viscosity near the limit 
cycle causes a loss of energy by dissipation. Referring back to (2.1) we can easily 
see that if T is the total kinetic energy of the relative motion 

taken over the disturbed region. The right-hand side is significant only near the 
limit cycle and so we have 

according to this argument the decay is therefore on an inviscid scale. It should 
be borne in mind, however, that the argument is coarse and it may well be that 
the decay rate does tend to zero as R + co, but more slowly than any negative 
power of R. An argument in support of this view is given in the next section. 

The structure of the disturbance near the limit cycle also enables us to sharpen 
the condition on A for the validity of the linearized theory. The relevant require- 
ment is that all velocity gradients should be small and hence, using the above 
estimates, 
which is severe. 

In order to explore further the nature of the disturbance when viscous effects 
are important we must distinguish between oscillations with w $. w, and those 
with w = w,. If w $. w,, as figure 1 (b )  illustrates, all the characteristics intersect 
the boundaries at  a finite angle and so the theory developed in §$3  and 4 is 
sufficient for the discussion of the history of the disturbance near the limit cycle. 
Once the bandwidth of the disturbance is reduced to N R-* the action of viscosity 
prevents it from getting any thinner but at  each reflexion it moves nearer to 
the limit cycle and so there must be some spillage. One can expect in fact that, 
if the disturbance coming down the I?+ characteristics to z = 0 is confined to 
the region w - R-* < y < w just outside the Ekman layer at  z = 0, the reflected 
ray will have the same flux ( N R-*) and spread out under the action of viscosity 
so that on returning to the neighbourhood a substantial part of the flux will be 
outside the limit cycle and tend to be lost to the trapped region in subsequent 
reflexions. It seems therefore that there will be a loss of flux due to leakage N R 4 .  
The energy associated with this leakage is however of O(RQ), which partly 
accounts for the rapid decay of the free oscillations. 

An important assumption underlying our discussions here is that the dis- 
turbance can be thought of as concentrated along rays and for this to be possible 
they must be regarded as two disturbances of equal flux but travelling in opposite 
directions. While this notion seems to lead to consistent conclusions over the 
majority of the trapped zone, we note two difficulties near the limit cycle. First, 
the wave escaping from the trapped region is uncompensated, unless we permit 
an inflow of energy, and hence has a lateral tail which, to begin with, is significant 

A R ~  < E ,  (5-3) 
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inside the trapped region. Secondly, the decay of the disturbance discussed here 
must be associated with a birth of the corresponding ray travelling in the opposite 
direction. Unless there is a source of flux on the limit cycle, therefore, the oscilla- 
tion cannot be maintained. Nor can it apparently be confined within the limit 
cycle, even approximately, when R 1 for there is a continual leakage of flux 
from the trapped zone and a dissipation of energy, roughly of the order of that 
available, in the neighbourhood of the limit cycle. 

This argument no longer applies when w = w,, so that the limit cycle touches 
the inner sphere sincep* is small near the limit cycle and consequently the theory 
of 5 4 needs modification. The formal solution of the reflexion problem is difficult 
in these cases and has not yet been achieved. However, the qualitative features 
can be seen directly and in view of the negative conclusions these are probably 
sufficient for our purposes. When the concentrated disturbance is within a dis- 
tance of O(R-4) of the limit cycle the reflexion at  ( f w,, 0) is seriously modified by 
viscosity and a significant part of the flux is lost to the trapped region by being 
carried out on the characteristic To which touches the plane z = 0,  i.e. 

(y f w,y- 22 = 0, y > w,. 

The remainder is concentrated into a ray of width N R-8 near the limit cycle: it  is 
therefore modified by viscosity such that it increases its thickness to R-4 and 
on return to the neighbourhood of z = 0 loses more flux on the To characteristic. 
Thus the main difference between this case and the others is that here the flux 
lost is immediately carried right away from the trapped zone whereas in the 
others the rays carrying the disturbance out move only gradually away from the 
limit cycle. In all cases the rays have a lateral tail unless compensated for. 

6. A forced oscillation 
The arguments of the previous section strongly suggest that, even in the limit 

R + co, it is unlikely that free oscillations, confined within a finite distance of the 
line y = 0,  can occur in the form usually considered. If set up they would decay 
a t  an inviscid rate near the limit cycle, so that their energy would be drained off, 
and in addition there would be a substantial leakage of flux across the cycle owing 
to the action of viscosity even though R 9 1. Finally the leakage of flux would 
have a lateral tail since there is no compensating inflow of flux to the trapped 
region. 

One possible way in which trapped oscillations might be set up is by imposing 
a forced oscillation on the boundaries, for example if they were given a normal 
velocity 

Such a notion might lead to difficulties with the equation of continuity but these 
can be avoided if the fluid is regarded as being slightly compressible. Alternatively 
we may think of the normal velocity as equivalent to the Ekman pumping due 
to a differential rotation, which from (5.3) must be < dR-BQ. 

If we now apply the inviscid theory of wave motion to this problem we see 
that the boundary conditions of 5 2, namelyf+ g = 0 on z = 0,  1, must be changed 

N A d  exp ( 2 i Q e h ~ t ) .  (6.1) 
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to f + g cc y on x = 0,1. Suppose now we follow a particular ray as it reflects off each 
boundary in turn, the values off or g changing by a finite amount a t  each re- 
flexion. If no lateral tails are present in any neighbourhood none will be de- 
veloped by the reflexion except possibly, and exceptionally, when a characteristic 
touches the inner sphere. In general therefore the use of ray theory seems 
consistent and we can expect the magnitudes off and g to remain finite at  finite 
values of y. We would not expect there to be any resonance effect when R is finite 
and is allowed to increase indefinitely. 

The situation is different when w lies within one of the ranges Q, < w < w, of 
continuous spectra for trapped oscillations in the inviscid theory, for now the 
rays can reflect off the boundaries an infinite number of times, while remaining 
within a finite distance of the origin, as they approach the limit cycle. In the 
viscous theory, provided that the tails cancel, the number of reflexions is limited 
by the onset of viscous effects when the ray is N RG from the cycle. An estimate of 
the maximum number of reflexions can be made by noting that if the successive 
reflexions of the ray from z = 0 occur at distances h, from the limit cycle, 
h,+l z h ( w )  h, when h, < 1, where A( Q,) = 1 and h(w,) = 0. We can expect there- 
fore that it will take 

reflexions from z = 0 to reach the limit cycle and pass over to the other side and 
away from the trapped zone. It follows that the disturbances in the trapped 
region will be larger than those outside by a factor log Rllog A. 

When w = w,, the limit cycle touches the line z = 0, h = 0, h,,, cc h,2 and the 
appropriate factor is - log log R. Once through the limit cycle there is then 
a more rapid dispersion of the disturbance owing to the reflexion at z = 0. When 
w = Qm, the limit cycle encloses a region of zero measure and for neighbouring 
rays h,,, = h, + O(hi). Hence h, cc s-l and the appropriate magnification of the 
disturbance N R*. For values of w just smaller than an we can estimate the 
maximum order of magnitude of the disturbance by considering how many 
reflexions are then needed to cross the characteristic through (aa, 1). If h, is 
defined as before it is easy to show that 

log R/3 log h (6.2) 

where A ,  and A ,  are positive constants. It then follows that (Q, - w)-4 reflexions 
are required to pass through the characteristic and this suggests that the maxi- 
mum amplitude of the disturbance is likely to be of the same order. 

In view of the weakness of the dependence of the maximum disturbance on 
R when w $: a, and of the bizarre nature of the oscillations when w = Q, it is 
unlikely that recognizable trapped oscillations would appear in a practical 
situation even if they were valid limits as R + 00. The most we would infer is 
that when a, < w < w, some amplification will take place as the rays carrying 
the disturbance cross the appropriate limit cycle. There is also a slight preference 
for a recognizable trapped mode being obtained if w is near Q,. 

The only numerical studies of trapped oscillations in a spherical shell known 
to the author are due to Israeli (1971), who considered the motion engendered 
when the outer sphere is given a small sinusoidal angular velocity in addition to 
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the basic rigid rotation. When R B I one might expect that the motion would be 
inviscid except in the Ekman boundary layers and near the limit cycle. His 
results indicate that there is a weak resonance at values of o in the frequency 
range Q1 6 w 6 o1 and while at E-l= 16000 the maximum occurs at  o M SZ, 
in agreement with the above argument, at  E-I = 36000 it occurs at w M wl .  The 
graphs of the stream function $ displayed clearly indicate the presence of an 
Ekman boundary layer near z = I, but no sign of the limit cycle of the inviscid 
theory, although there are some indications of a trapped oscillation. One is 
inclined to suspect that the difficulties inherent in the inviscid theory are the 
reason but it should be noted that even when E-l = 36000 and E = 3, which is 
the nearest Israeli was able to get t o  the conditions required, R M 200. For the 
shell with a. = 2b and 8 = 1, Israeli obtained a sharp resonance when E-l = lo4, 
which apeed well with Aldridge’s experiments. 

The author is grabeful for helpful correspondence with Dr H. P. Greenspan and 
Dr M. Israeli. 
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